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The Goal:   Automatable Synthesis of Most Natural Product (NP) 
Chemical Space via Iterative Cross Coupling (ICC)

Our Contributions:
1. Algorithms for ICC compatible synthesis planning of large target 

libraries and building block library selection

2. Impact prioritized list of building blocks which enable efficient 
synthesis of most link-cyclic NP chemical space

3. Characterization of cross coupling reactions and substrate 
scopes ranked by impact to synthesis of NP chemical space

The Approach:

1. Gather a representative set of 100k Link-cyclic Natural Products

2. Given the constraints of iterative cross coupling, generate 

synthetic plans, allowing all valid blocks and couplings 

3. Find the smallest block library which enables coverage of the 

most NP chemical space using the fewest reaction steps

4. Given block set, identify an “optimal” synthetic plan per target, 

and record the coupling reactions involved

Automated Cross Coupling Synthesis Platform 

Optimization / Block + Plan Selection

Prioritized Cross Coupling Substrate Scopes
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Example Blocks

Natural Product Space 

Primary Synthesis Constraints

1. Only Rotatable Bonds can be broken
2. Bonds to R Groups can NOT be broken
3. Blocks must have at least 2 heavy atoms
4. Blocks can have at most 3 Termini*
5. An atom can have at most 2 termini
6. Post Coupling Product, must have at 

least 1 of the following  MP1, MP2, OH, H, 
or equivalent for Purification turnover 
unless terminal coupling in plan

R Groups

Notation & Terminology

Coupling Reactions Allowed

Heteroatom
Acylations

Cross Couplings:
Suzuki-Miyuara, 

Buchwald-Hartwig, 
Hiyama-Denmark, 

Negishi,  Sonigashira, 
Stille, etc.

Glycosylations
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𝑁 ≥  105 ∶ # of Natural Products, indexed by i

𝐾 ≥  107 ∶ # of Block Candidates, indexed by k

𝑆𝑃𝑖 ∝  2𝑛 𝑏𝑟𝑒𝑎𝑘𝑎𝑏𝑙𝑒:  𝑆𝑒𝑡 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑝𝑙𝑎𝑛𝑠, plans indexed by j. 
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𝑧𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑣𝑒𝑟𝑔𝑎𝑒 𝑎𝑐ℎ𝑖𝑣𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 
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Synthesis Constraints

Iterative Cross coupling

Termini: reactive group facilitates 
and is consumed during coupling, 
possibly protected 
Block: molecular fragment with 
preinstalled termini

Number of Heavy Atoms: 11 

Heavy Atoms Covered: 11
Number of Heavy Atoms: 43 

Heavy Atoms Covered:  33

Number of Heavy Atoms: 24 

Heavy Atoms Covered: 16 

Number of Heavy Atoms: 25 

Heavy Atoms Covered: 19

Candidate Block Set

Sample Coverage

Optimization Problem
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Example Synthetic Plan
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1. Target Molecule 2. Reduction to Free Tree
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Symmetric Block

Molecule Representation

Synthesis Plan Tree Expansion

1. Enumerating All Plans would have worst case cost 2^N  per target but 
by recognizing conditional independence of subtrees, a recursive 
subtree expansion procedure allows for maximum memorization

2. A link/Cut Tree like data structure is used to maintain subtrees and 
quickly re-root free trees for canonicalization

3. Prioritization of Expansion order addressed by learnable policy over 
edge features like: support(edge), support(neighboring block), 
distance from leaves and high degree nodes, etc. In practice, hand 
designed e-greedy policy is best because time it takes to learn policy 
has too high an opportunity cost

Algorithm: Bidirectional Lazy Greedy Subset Selection for Blocks

Sort blocks by descending marginal gain per block, maintain in a MaxHeap
While total_coverage < N%

For f Forward Steps:
 max_gain = 0
 for block in sorted_block_heap:
  gain = conditional_marginal_gain(block , A)
  max_gain = max(max_gain, gain)
  if max_gain >= UB_gain:
   Add max_block, break
 Add max_block

For b Backward Steps: 
 add block with min loss upon removal from A

 

Optimization Curve
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